Medullary lateral tegmental field: an important synaptic relay in the baroreceptor reflex pathway of the cat.
نویسندگان
چکیده
This study was designed to test the hypothesis that the medullary lateral tegmental field (LTF) is an important synaptic relay in the baroreceptor reflex pathway controlling sympathetic nerve discharge (SND) of urethan-anesthetized cats. We determined the effects of blockade of excitatory amino acid-mediated neurotransmission in the LTF on three indexes of baroreceptor reflex function: cardiac-related power in SND, strength of linear correlation (coherence value) of SND to the arterial pulse (AP), and inhibition of SND during increased arterial pressure produced by abrupt obstruction of the abdominal aorta. Bilateral microinjection ofd-(-)-2-amino-5-phosphonopentanoic acid, an N-methyl-d-aspartate (NMDA) receptor antagonist, abolished cardiac-related power and coherence of SND to the AP, and it prevented inhibition of SND during aortic obstruction. These data support the view that NMDA receptor-mediated neurotransmission in the LTF is critical for baroreceptor reflex control of SND. Bilateral microinjection of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo-[ f]-quinoxaline-7-sulfonamide, a non-NMDA receptor antagonist, decreased cardiac-related power and total power in the 0- to 6-Hz band of SND; however, the AP-SND coherence value remained high, and inhibition of SND during aortic obstruction was preserved. These data imply that non-NMDA receptor-mediated neurotransmission in the LTF is involved in setting the level of excitatory drive to sympathetic nerves.
منابع مشابه
Medullary lateral tegmental field: an important source of basal sympathetic nerve discharge in the cat.
We used blockade of excitatory amino acid (EAA) neurotransmission in the medullary lateral tegmental field (LTF) and rostral ventrolateral medulla (RVLM) to assess the roles of these regions in the control of inferior cardiac sympathetic nerve discharge (SND) and mean arterial pressure (MAP) in urethan-anesthetized, baroreceptor-denervated cats. Bilateral microinjection of a non-N-methyl-D-aspa...
متن کاملEffects on sympathetic activity of 8-OHDPAT and clonidine in cat medullary lateral tegmental field.
This study was designed to test the hypothesis that 8-hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT) and clonidine reduce sympathetic nerve discharge (SND) and mean arterial pressure (MAP), in part by actions in the medullary lateral tegmental field (LTF). We microinjected these drugs bilaterally into the LTF of baroreceptor-innervated and -denervated cats anesthetized with Dial-urethane. Neit...
متن کاملCharacterization of the sympatho-facilitative area postrema pathway.
1. The mechanism by which the area postrema augments central sympathetic drive during electrical stimulation is presently unknown. This pathway may involve either direct facilitation of brain-stem vasomotor neurons or inhibition of the sympatho-inhibitory baroreceptor relay in the nucleus tractus solitarii. 2. The present study employed selective lesions within the solitary tract nucleus to ass...
متن کاملRostral ventrolateral medullary but not medullary lateral tegmental field neurons mediate sympatho-sympathetic reflexes in cats.
This study was designed to build on past work from this laboratory by testing the hypothesis that medullary lateral tegmental field (LTF) neurons play a critical role in mediating sympathoexcitatory responses to activation of sympathetic afferent fibers. We studied the effects of microinjection of N-methyl-d-aspartate (NMDA) or non-NMDA receptor antagonists or muscimol bilaterally into the LTF ...
متن کاملDifferential effects of an NMDA and a non-NMDA receptor antagonist on medullary lateral tegmental field neurons.
We microiontophoresed an N-methyl-D-aspartate (NMDA) and a non-NMDA receptor antagonist onto medullary lateral tegmental field (LTF) neurons, the naturally occurring discharges of which were correlated to the cardiac-related rhythm in sympathetic nerve discharge (SND) of dialurethane-anesthetized cats. Some of these neurons were classified as sympathoexcitatory, because their firing rate decrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 277 5 Pt 2 شماره
صفحات -
تاریخ انتشار 1999